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Abstract

A hybrid (non-ray, non-modaX) method 6o% computing the fied6

o6 a paraxial beam propagating in a multimode waveguide (parwtce-

plate ox dietectic .slab) at large axiat distance i6 pruented.

The method £6 based on the FouieA and FrLeneI set-imaging

propetiue o6 theze waveguide4, and iz capable o6 igh accuracy.

The method is much mote e6fi.ient than %ay o& mode approache6,

white giving complete fietd information which coupled-power

equation. do not p,%ovide.
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I. INTRODUCTION

Multimode optical fibers appear at present to be the most common

optical waveguiding medium for applications in the immediate future.

Incoherent sources and relatively simple detectors can be used, and

the tolerance problems encountered with single-mode fibers are far less

severe with such waveguides.

At present, there are essentially three methods available for field

computation in multimode waveguides. First, one can take a pure modal

approach--the excitation amplitude of each mode is computed, anu all

modes are summed together. Although in principle exact, this approach

suffers not only from the large number of modes which must be kept track

of (lO100lO0 for a typical fiber; 30n100 for a slab geometry) but also

from a large degree of cancellation of terms in the mode sum when the

field does not match that of an individual mode. Examples of the appli-

cation of this method may be found in [1]. Although in some special

cases approximate closed-form results are available, a computer analysis

is generally required, and roundoff errors can be expected to accumulate,

especially for large propagation distances.

A second approach is that of geometrical optics (sometimes encountered

as the WKB method). An excellent discussion of this approach has been

given by Gloge and Marcatili [2] (see also [3]). Here one approximates

the effect of a large number of discrete propagating modes by a continu-

ously distributed propagation constant belonging to a "continuous spectrum"

of modes. These, when computed under the WKB approximation, can be

interpreted as a cone of rays lying within some characteristic acceptance

,, i I , n n II.I..I.I.ll..III.l.ll....................... 
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angle of the fiber. The propagation problen then reduces to that of

determining the amplitude with which each 'ay is excited, and tracing it

down the length of the guide. Intuitively more suitable for multimode

guides because of the "high-frequency" nature of the problem, this approach

is nonetheless approximate by virtue of the geometrical optics technique.

Moreover, in a situation where paraxial propagation conditions exist (see

below), a large number of rays can be expected to contribute at large

propagation distances (hundreds of meters or several kilometers may not

be uncommon). In this region, the geometrical optics approach can be

seen to suffer from similar disadvantages as does the first.

A third approach (see, e.g., [4],[5]) is a purely numerical one,

wherein the partial differential equation--Helmholtz or its parabolic

approximant--is tackled directly, without the use of either mode or ray

concepts. In [4] and [5], the equation is discretized and solved with

the aid of fast Fourier transform techniques. This method, like the first,

is also capable of arbitrary accuracy in principle, and requires neither

a detailed knowledge of a large number of modes, nor the tracing of a

large number of ray paths. Again, however, when very long propagation

distances are being studied, the discretization of the wave equation in

the longitudinal direction can lead to large error accumulations which do

not seem easily avoidable by this technique.

Finally, we might also mention here the coupled-power equations

approach [1]. This method seeks only to find the total power carried by

each mode, since for many applications the details of the field distribu-

tion from each mode are not of interest. One then takes a statistical

approach to these equations, and obtains useful results for pulse dispersion
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when each mode of the guide is detectable only through its total power.

There are many other applications, however, when the fields themselves are

important, such as in the design of couplers, splitters, switches, splicers,

etc., and it is this problem in which we are interested here.

The method we propose is based on the imaging properties of multi-

mode waveguides. In the paraxial approximation, a parallel-plate or

dielectric slab waveguide will periodically reconstruct the field pattern

at the input plane (and, at more frequent intervals, a string of such

replicas). Because of this, we need only perform our field computations

within the space of one of these periods, and will not suffer the loss of

accuracy at large distances associated with the methods described above.

Our computations will be performed for a parallel-plate waveguide with

perfectly conducting walls, but the results are immediately applicable to

the dielectric slab waveguide (Appendix A). The method will allow a

simple formula to be obtained for the propagation of a Gaussian beam of

substantially narrower width than that of the guide. (Note that the study

by Felsen and Shin [6] of beam propagation in waveguides is in practice

restricted to beams which propagate obliquely to the axis of the guide,

and actually will suffer from the same drawbacks at large axial distances

as does the ray method, although it is probably superior to the ray method

at shorter distances). Numerical comparisons with exact (modal) calcula-

tions are quite favorable, even for rather large propagation distances.

IL . . .. . .. .
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II. THE PARAXIAL APPROXIMATION

To fix ideas, let us consider the parallel-plate waveguide illustrated

in Fig. 1 (the discussion of this section, however, is quite general and

need not be restricted to this specific waveguide). The walls at x = 0

and x = a are perfectly conducting, and some known source produces a given

excitation or input field at the plane z =0. For simplicity, we restrict

ourselves to two dimensional, TE fields, so that the entire field

= x H + z H Z, E = yE y, where a x,a y,az are Cartesian unit vectors, can

be derived from the scalar function Ey which satisfies

(Z4+ ;~ + k 2) Ey = (0ax 2 + 2z

for z >0. Here k = w/viTc, where a time dependence exp(iwt) has been

assumed, and P, c are the electrical parameters of the medium filling

the waveguide.

In the paraxial approximation, we write

Ey(xz) = e-ikZA(xz) (2)

and assume that most propagation takes place nearly in the z-direction;

that is, A(x,z) as a function of z varies slowly compared to exp(-ikz).

Inserting (2) into (1) we obtain

( 2  i a + A(x,z) = 0 (3)
ax z

and in the paraxial approximation, we neglect the a 2/az2 term compared

to the first derivative term because of the slow variation of A(x,z) in

z assumed above. We thus obtain the following parabolic equation for

A(x,z)[7]:
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D2 2ik aA(x,z) =0 (4)

To put this approximation on a more quantitative footing, we can apply

some ideas from the boundary-layer technique [8]. By "stretching" the

variable x into a new variable v = x/a, we can deal with a transverse

variable v which is 0(1) over the entire cross-section of the guide. When

rewritten in terms of v, equation (4) becomes

S- 2ika2 - )A(v,z) = 0 (5)

which suggests that the scaling = const z/ka2 might be convenient. For

reasons which will become clear in the next section, we choose c irz/4ka 2.

Making both changes of variable in (3), we have

22 216k~a C (6)
lv 6k a ac

It is natural now to assume a solution to (6) of the form

A(v, ) - Ao(VC) + ( -Av(,r) +C-T 4-A2 (v,) + (7)

so that, by matching powers of (ka) -2 , we find a recurrent set of

equations for A0, Al , etc.:

D )A v,) 0 2) 2A( (

" i a (1 ,  16 21(9)

and so on. As initial conditions at C = 0, we require A (x/a,D) Ey (x,)--

a given function--while A,(v,0) = A2 (v,G) .o. 0.
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We are now in a position to estimate the magnitude of the correction

term Al, and therefore the error involved in the paraxial approximation.

It is easily verified that, for example,

A1  I) 4 A v,; ) - 2 AO)
21Tv V4 8 a 2

with A2, A3, etc., given by similar expressions. Because of the scaling

of the variables v and c, the differentiations in (10) do not increase

the order of magnitude of the function A Thus if A is 0(1), then

JAI(V,01) 0(0 (11)

so a :riterion for the accuracy of the paraxial approximation (A = A )

is thet /k2a 2 << 1, or in other words,

kz << (ka) 4  (12)

In addition, of course, we also have the condition k2a2 >> I, which is

implicit in the expansion (7) and the fact that the guide is highly multi-

mode.

These arguments are not restricted to the case of a parallel-plate

waveguide. However, as with any "order-of-magnitude" arguments, they

say nothing about the proportionality constant implicit in (11). In fact,

this constant will depend sensitively on the function A (V,?;), mostly

through its initial value A (v,O). Thus, a detailed study of the esti-

mate (11) should be made when using the paraxial approximation in any

specific situation. This procedure is discussed in some detail by

Tappert [9], who also gives a large number of references to its use in

acoustics. In Appendix A, we consider the paraxial approximation for
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a dielectric slab waveguide, and demonstrate an approximate equivalence

wtth a parallel-plate waveguide.

N closing, we might also note that Polyanskii [11] has obtained a

formula relating the solution of the parabolic equation to that of the

Helmholtz equation which is an alternative to the perturbation series

(7). Further, another variant of the parabolic equation more suitable

for off-axis propagation has been proposed in [12].
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III. GREENS FUNCTION AND IMAGING

By well-known techniques, the field Ey (x,z) for z >0 in the waveguide

can be expressed in terms of the field Ey (x,O) at an input plane (z =0)

by means of a Green's function G(x,x';z):
a

Ey(x,z) = fEy(x',O)G(x,x';z)dx' (13)

where G can be expressed as a modal expansion:

G(x,x' ;z) = m i1 sin sin T e m z > 0 (14)
a m-1 a a

where am = (k2 - m2 2/a2 )1. On the other hand, the Green's function Go

for the paraxial approximation (2), (4) to E is given by:Y

(x~m';x e-x ik 0zm2T,2/2ka 2

x~'; Zeikz sin m sin m m (15)
o a m=l a a

Evidently G could have been obtained from G by replacing am  by the

first two terms of its binomial expansion am = k -m2T2/2ka . We see that

whereas G has a large but finite number of modes which propagate, the

paraxial approximation G has infinitely many such modes. It is con-0

venient to rewrite G0  by expressing the sine functions as exponentials;

the result is:

G (x,x, ;z) eikz eiZm2 2 /2ka fe-im7T(x-x )/a e- im(x+x')/a (16)
o 2a IC

If we define
Z = 4ka 2/7T (17)

(so that the stretched variable of the previous section is = Z/zll), then

.
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= 21Ttm2 z/z " 'a

Go(x,x';z) = I e-ikz e 1 -i 2 m)/ e-.(x -.xI)/a (18)
0 m=-=i

Equation (18) is the basis for the so-called Fourier-and Fresnel-

imaging properties of this waveguide [13], It is easily seen from (18)

that exp(ikz)% is a periodic function of z:

%o(XX,,;z +Zli) = Go(X,,;z ~ -k11 (19)

In particular, since (13) implies that G(x,xI;O) is equal to 6(x-x')

for 04(x,x')<a, we have

-iknz l

Go (x,x; nz1.) = d(x-x')e 1 (20)

for any integer n, i.e., the input plane field is replicated at each

of the Fourier image planes z = nz l. This phenomenon was first investi-

gated theoretically for unbounded periodic gratings, and the imaging dis-

tance was first given by Rayleigh [14]. Later treatments have been given

in [13], [15]-[17]. Because of the mathematical equivalence of a wave-

guide with a periodic system, this imaging also occurs in waveguides--a

fact apparently first noticed by Rivlin and Shul'dyaev [18] and discussed

at length by a number of authors [10],[19]-[23].

An even more interesting occurrence shows up at z = z pq, where

Zpq p az 1 1 (21)

and p and q are some positive integers. Let us consider the sum

-imx/a + 2im 2Zpq/Z
Qpq(x)= =- e (22)

Lp
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Let m=p,+ r, where r runs from 0 to p-l, and express (22) as a

double sum:

Q (X) = pi e-ix(pk+r)/a + 2iqp+2r +r/p]
pq X=-. r=0 

(23)=pl etrx/a + 2iqr 2/p i ei. p~x/a )

r=Q k=. 0

However, the summation in parenthesis is nothing more than Qll(px), although

now the argument can range not just from -a to +a (or 0 to 2a), but from

-pa to +pa (or 0 to 2pa). Making use of the formula [24]:

S Timx/ d 0 6(x-nd) (24)

for any posittve d,

Qpq(x = -2a eirrx/a +2riqr 2/p 0 2na) (25)

P r~o n=-c

From (18), then, we have

-ikz
o(x,x';z ) =e pq c (p.q)[6(xx' -na) -6(x+x -- )] (26)n= n p p

where the coefficients cn  are given by

P 1 e2nir(rq+n)/pCn(p,q) - X er(27

For p = 1, only one of the delta-functions, 6(x-x'), is nonzero

in the range 0 <(x,x') < a, and we recover the single Fourier image

described before. If p >1 on the other hand, more of the delta-functions

in (26) may appear in this range. Each one contributes to (13) a replica

of the input field which is shifted by some amount in the x-direction,
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and whose amplitude is Icn(p,q)! times that of the original image. Any

terms arising from the terms (x+x' -2na/p) are inverted as well. Images

of this type have been called Fresnel iliages.

For an input function not symmetritc with respect to the center of

the guide x = a/2, we have depicted the various images along with their

(complex) amplitudes i'n Fig. 2 for z21, z31 and z41. The phase factor

exp(-ikz) is omitted in this figure. Figure 2(a) illustrates the input

function Ey (x,O). At z=z 21, there is only one image, which is inverted

with respect to the original, but is also a further 1800 out of phase with

respect to the input after the factor exp(-ikz) is accounted for (Fig. 2(b)).

At z = z31 (Fig. 2(c)), the situation is more involved. One of the images

is an unchanged replica, reduced in amplitude by l/vT- and phase shifted

by 90°. The other two image terms have "broken up" and rearranged the

original pattern. Between them, they both contain two complete replicas

of the original, and again the amplitude of each is reduced by I//.

Note that this amplitude reduction is consistent with the fact that all

of the power of the original pattern must be divided between the three split

images. At z = z41, there is both an erect and an inverted image (Fig. 2(d)).

For the special case of a symmetric excitation, Ey (x,O) = E y(a -x,O),

z21, z41 and indeed z81 all reproduce the original input function (Fig.3(a)).

If the input function is a beam of sufficiently narrow width, we can recog-

nize three essentially distinct images at z31 (Fig. 3(b)). At other image

planes, similar conclusions hold.

The Fourier and Fresnel images allow us, in principle, to compute

the field in the waveguide at any point zpq (and any arbitrary value of

z can be approached as nearly as desired by such a point). This
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procedure could, however, require a large value of p, and hence an inordi-

nately large number of image terms, resulting in a method which is no

more efficient than the modal approach. In the next section, we will

show how, for a certain specific type of excitation, efficient field compu-

tation can be carried out for any value of z, using only a relatively

small number of images.

Let us emphasize in closing this section that the imaging phenomenon

results from the collective interference of the mode sum (14), or alter-

natively from the interference of the series of "rays" (plane waves)

represented by (18), depending on one's preferred physical picture. The

only assumption involved is the paraxial approximation, and in the case

of the parallel-plate waveguide, no approximation of the mode functions

themselves is needed. In the case of a dielectric waveguide, some small

higher-order corrections to the mode functions will be needed (see

Appendix A),
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IV. PROPAGATION OF A GAUSSIAN BEAM

Consider the initial field distribution

2 2
-(x-x ) /2w

E y(x,O) = e 0 0 (28)

i.e., a Gaussian beam centered at x. with waist parameter wo.

Let 0<x0 <a, and assume that the "tails" of the beam are negligible at

the walls of the guide:

wo < < xo  w w < < a - xo
0  x 0  0  0

In addition, we also suppose that the beam is well collimated, kw >>.
0

Under these conditions and the paraxial approximation, (13) can be

replaced by
-o(x I-Xo) 2/2w2

Ey(xz) = e Go 0(x,x';z)dx (29)

We wish to evaluate (.29) for arbitrary (not necessarily rational) values

of Z/Zll.

To do this it is convenient to express G0  in terms of the Jacobian

theta-function , defined by Whittaker and Watson [25] as:
2.

z = c emiT + 2miz (30)
M= - 00

(the argument z is conventionally used in this connection and should not

be confused with the cartesian coordinate z used above). This function

has a wealth of useful properties which we summarize in Appendix B. The

theta-function appears in solutions of other parabolic equations, such as

the heat equation [28]. In the paraxial parabolic equation, however, the

arguments z and T are both real (see below) and "3 must be treated as

a generalized function.
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Using (30), G0  becomes

G (x,x';z) = e- ikz 1(4 x-' 2z, -+X irxz' (31)o 2ae 12a a 3 2a

From (29), then-, ik C -(x,-xo,,w L)cx., 2 1z2 2<+~ Tzr X
Ey(xz) = e- ) z dxI

(32)

With the help of (B.ll) we obtain

w.2 .W2)}

e2z L w +' (x x0 ) + irwO)Ey ( x ' z )  a j1-a 2a + 2' 2 zl 2a

(33)

Let us first consider the focussing relative to z 1l Let

z = qz11 + Az, where -z11/2 < z 11 /2 and q is an integer. From

(B.3) and (B.8), we have

Ey(X,Z) = fe- eikz e-(X-X) 2 /2f2(Az) A ia( x-x) 2ia 2

(34)

-(x+x°)2/2f2(A z) (ia(x+x) 2ia 2

3- ef2(Az)' 14i (Az)

where we have defined a "complex waist parameter" f(Az) as

f 2(Az) = w2 E, _i 4 w 2 iAz/k (35)
0 7rw0  11

Using (B.12), we can further reduce (34) to

w 00 -(x-x +2ma) 2/2f2 (Az) -(x+x o+2ma) 2/2f2(Az)

Ey(x z f-z e-ikz m=- e -e

(36)
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Now
i z/kw2

2 = 1 + 2k 0 (37)

2f2 (Az) 2w2 (z) 2w((Az)

where the waist size w(Az) is given by

w2(Az) = w2 + (Az/kwo)2 (38)

so we can see that (36) represents an infinite series of Gaussian beams,

each broadened from its focal plane z =qzll as if it were propagating in

free space. We illustrate this in Fig. 4. As Az increases, more and

more of the "image" beams contribute significantly to the field in

0 x.<a. At Az = Z11/2 (say), the waist size has become

w2(z /2) = 2 + (2a2/o )2 4/r 2w 2 >> a2

because our assumptions about the beam imply a >> wo. Thus we may

require quite a few terms of the image series (36) in order to compute

the fields at certain values of z.

For such values of Az, we seek to improve the efficiency of our

scheme by transforming (33) in a somewhat different manner. Applying

relation (B.9), we find that

w r7 2 r2 w2/2a2
y a/ - -ikz P-1 eE y(X,Z) e-/ e

r=O

i-r(X-xo)/a z 2 z 2

Lx ~27rz ir 'To 2 11 + p2  2a2

3[Tx2ao + -Z + ir 2 z +i 2  )

iir(x-x )/a(Fr(.x+x) 2  2  1 2 '
-•11 PL-- +  ir 2 ^1 +ip 2a "

(39)
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for any specified positive tnteger p. Now, let z Zpq + Az . where

now -z11/2p A z p z11 /2p. The periodicity properties (B.3) and (B.4)

allow us to replace z by AZp in the arguments of the theta-functions

in (39). Subsequently applying (B.8) results in

S(xz)eik z p e2 i r2q/p e-(x-xo) 2/2f2 (Az) ia(X-Xo) r

y pf(AZ pr=O pf2(Az) p
p

2 ) e-(X+xo0/2f2 (Az ) (ia(x+x ) 2ia 2

2 2 3k-ezp 2 2Irp f(Az ) p 2 A rp f(Az
p Pp

(40)

where f is defined in (35) as before. For p =l, this reduces to (34)

as expected. Finally, through the use of (B.12) we obtain

Ey(x~z) f(z3 e-ikz IP-l e 2ir2q pl e-21imr/p[-(xxo+2ma/p)2/2f2(Ap)

p r=

e- (x+x°+2ma/p)2/2f2(Azp)i} (41)

Clearly, equation (41) represents a string of Fresnel images at zpq,

broadened by their additional propagation distance Az as evidenced by

the factor f(Az p)(compare (26)-(27)). A slight rearrangement of (41)

yields a single summation (letting m--n):

y(xz) = w0  e-ikz f q)e-(x-xo-2na/p)2/2f2(Az P)
Wo e-ik Cn n(p.q

e(X+Xo2na/p)2/2f2(Azp)} (42)

where c n(p,q) is given by (27).

How, then, is p to be chosen? Our goal is to minimize the

number of terms of the series (42) required to give a specified accuracy.
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If we elect to truncate the series at n= ±N such that the terms at this

point have magnitude less than, say, e"8 , N will be the next larger

integer than

2pw(Az p)/a

where w is given by (38) and we have examined the "worst case" when

x x0 in the first term of the summand in (42). As Azp varies from 0

to z11/2p, this quantity varies from 2pw0/a to

224
4 a I

0 4a4

If p < a/2wo , N will vary between a minimum of 1 and a maximum of
2 2

about 4a/Trwo . If, on the other hand, p > 2a /Trw o , then N is at least

4a/nw0  as a minimum, and at least 4/vTa/ w0  as a maximum. Clearly

then, such large values of p are undesirable for efficient field

computations (because more images of the Gaussian beam are fitted inside

the waveguide than can be accommodated without severe overlap), and there

is no apparent reason to let p exceed a value on the order of a/wo.

On the other hand, for a specific value of z, Azp may be much closer

to zero for a smaller value of p, and in such cases the smaller choice

of p might be desirable. However, a single choice of p for all

values of z results in a simpler computer program, and it is seen from

the foregoing discussion that a value of about a/w0 is nearly optimal.
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V. NUMERICAL RESULTS

Numerical results for 0<z <z81 were computed for a symmetrical

Gaussian beam2
-(x-a/2)2/2w0

E y(x,O) = e

for a waveguide with ka = 973.4, kwo - 110.3. Computations were made

using both an exact mode series (cf. (14)) and the hybrid-image represen-

tation (42), The two methods gave graphically indistinguishable results

over this range, which are displayed in Fig. 5. Note that 5 or 6 is

the maximum distinguishable number of beams in this case, and is a

suitable choice for p.

Figure 6 shows that for very large values of z, the accuracy of

the paraxial approximation has begun to deteriorate slightly. In a

future paper, we will examine how to obtain closed-form expressions for

this correction, but meanwhile we note that even for z = 250zll, the

accuracy of the paraxial expression is quite good. If we take this

example to model an optical waveguide with a =lO0i, w = 7 .07p, the

distance 250z11  represents about a 50mlength of waveguide which of

course is a huge number of wavelengths, We thus see that the paraxial

approximation is capable of excellent accuracy over modest lengths of

waveguide, even at optical frequencies.
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VI. CONCLUSION

We have described a hybrid technique for computing the fields of

a paraxial beam propagating in a multimode waveguide for very long

distances. The method relies on the periodic Fourier and Fresnel

imaging properties of the guide, and is highly efficient for beams of

moderate width compared to either full modal or ray approaches. Numer-

ical comparisons have confirmed the accuracy of this method.

This approach should be susceptible to generalizations in several

directions. For a beam with oblique incidence (as in [6]), the parabolic

approximation of section II can be modified when the dominant propagation

factor in the z-direction is other than exp(-ikz) as indicated in [12].

Higher-order corrections to the paraxial solution for a dielectric slab

similar to those for the metallic guide given in Section II can also be

obtained. Slowly-varying guide widths and inhomogeneous refractive

index profiles should also be tractable by similar methods. Investigations

into these areas are currently being made, as is the generalization to

waveguides of circular symmetry.
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APPENDIX A

THE PARAXIAL APPROXIMATION FOR A DIELECTRIC SLAB

Consider the step-index dielectric slab waveguide shown in Fig. A.1.

The slab has thickness b and refractive index no. The cladding index is

nl, and both media are assumed to be nonmagnetic. The TE modes for this

waveguide have the field distribution [1]

eikaz A e k sin q (a) x <0

(A.1)

Ey= eikaz A sin 7n12 x + O<x<b

eikaz A sin n a b + (a ex>b

where A is an arbitrary constant amplitude. Here k is the wavenumber

of free space, kcL is the propagation constant of the mode, and p(cL)

is the phase shift associated with the Goos-H~nchen effect:

@()= sin'l~kb no2 -2/V] (A.2)

where V is the so-called normalized frequency:

V = kb' n- (A.3)

Note that V >> 1 for a highly multimode guide.

The characteristic equation which determines the eigenvalues c is

obtained by requiring H to be continuous at x=b:

se n b + 2 ( 0 (A.4)

The paraxial approximation to these modes (, n) is found as in [10]

00

Note, tha V >> I fo a ....... l Im -e gu ... .ll ... Iil ... . . . .. l .. l
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by reckoning (ct) to be small. From (A.2) and (A.4), we then obtain

approximately

sin [k a(l + 2/V)] = 0

or (A.5)
-2 --/C m2 2

am 0 k2b2 (l +2/V) 2

i.e., the propagation constants for a parallel-plate waveguide of

slightly larger width a =b(l +2/V). The corresponding field within the

slab is, from (A.l),

e iIA sin[k 0 oL (x + b/V 0 < x < b (A.6)

Here we have

am 0 k2b2 (1 +2/V) 2  k b V (1 +2/V) 5am n 2n (A.7)

0 m TV

k b4(I +2/V) 4 ]

For most optical waveguides the first error term is likely to be the

larger, but in any case we require

k2b2V 3 >> l and k b >> l
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APPENDIX B

PROPERTIES OF 3(ZIT)

In this Appendix, we derive a number of useful properties of the

theta-function 193(z[T), defined by
32

3(z GT) = 2 em T + 2miz (B.l)

where, for our purposes, z is an arbitrary complex number, while T

lies in the upper half-plane Im(T) > 0. If T lies on the real axis,

we likewise require that z be real, and in this case -03(ZIT) must be
3

treated as a generalized function.

From Whittaker and Watson [25], we can obtain a number of periodicity

and parity relations:

3(zIT) = 193(-zIT) (B.2)

3(zIT+2n) : 93(zlT) (B.3)

3(z + n I )= I (Z IT) n =0,+±1,+2,... (B.4)

A(z+nrTIT)=e-"inzT "2inz 3(ZIf) (B.5)

All four relations are easy consequences of the definition (B.1). It is

also interesting to note that A satisfies the parabolic equation3

i 2j ( ZIT)

T i (3 + ! 3  0 (B.6)
4 2  DT

azo
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which is obtained from the Helmholtz equation in the paraxial approximation,

and i's similarly easily verified (cf. eqn,(8)).

For real z, 3 at T O (as a generalized function) can be evalu-'3

ated as [24],126):

3(zIO)= e 2m iz = T cc 6(z-nn) (B.7)
M= -CO n= .oo

Another useful relation, which holds for general z and T, is

obtained from Jacobi's imaginary transformation [21]:

3(zIT) -A" eiTr/4+z2/ iT 1 3(z I - (B.8)

This relation can be verified using the Poisson summation formula [24].

The identities which form the basis for the "image-splitting"

properties of the theta -function can be deduced from a more general

expression given by Krazer [27]. These relations, which might be

referred to as modular relations, are

13(zIT) = pI eltir 2 T+2irz (p[z+7r ]Ip 2T) (B.9)
r=O

3(zIT) Pr=O p2

Equation (B.9) is verified by writing m=p+r, r=O,l,...,(p-l) in (B.1);

(B.1O) follows by substituting (B.l) into the right hand side. Actually

(B.9) and (B.lO) can also be derifed from each other using (B.8) as well.

An integral which the authors could not find in the literature

is given below:

II
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Ie-ax +bx 1(xI )dx = jeb /4a T+L(B.11)

The dertvation is straightforward, proceeding by integrating (B.l) tem-by-

term.

Finally, we note that

13 (iztit) = eZ2  1 t e(Z+m T) 21 (B.12)
M= - b

i.e., l 3 can be related to a string of displaced Gaussian functions.

3)



Figure Captions

Fig. 1: Parallel-plate waveguide.

Fig. 2: Imaging of a nonsymmetrical field distribution.

(a) Input function Ey (x,O).

(b) Ey(xz 21) = Ey(a-x,O) (Inverted image).

(c) The three components of Ey (x,z31);

e - E- y -  xO) ; O4x.<y
Ey(XZ31)  = y(XO) + a a-VT Ey(x -A ,0) L x a

E (!a-xO) ,<,O)

(d) The two components of E (xZ

Ey(xz 41) = [e
i ir/4 Ey(XO) + e3Xi/ 4Ey (a -x,O)]/V -.

Fig. 3: Imaging of a symmetric field distribution.

(a) IEy(x,O)t : IEy(xZ 21): IEy(xz 41)I = IEy(xz 81 )I

(b) The three components of Ey(xz 31).

Fig. 4: Overlapping of original and image beams in overmoded waveguide.

Fig. 5: Evaluation of power distribution of Gaussian beam over 1/8-cycle:

ka = 973.39; kwo =110.3. (a) z/z11= 0; (b) 3/512; (c) 8/512;

(d) 13/512; (e) 16/512; (f) 22/512; (g) 28/512; (h) 32/512;
(i) 55/512; (j) 64/512.

Fig. 6: Exact and approximate power patterns at large axial distance;
ka=1538.23; kwo =174.3; Z/Z 1 250.119.

Fig. A.: Dielectric slab waveguide

'4
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